動的に変化する環境下における自律移動ロボット
近年、AIを搭載した自律移動システムは著しい進歩を遂げようとしています。動的に変化する環境下における自律移動ロボットは、産業に新たな自動化の機会をもたらすものとなるでしょうか?
近年、AIを搭載した自律移動システムは著しい進歩を遂げようとしています。動的に変化する環境下における自律移動ロボットは、産業に新たな自動化の機会をもたらすものとなるでしょうか?
To decentralise, or not to decentralise, that is the question. This Web3 dilemma reflects the likely thoughts of current digital leaders who want to make the best use of their digital assets while maintaining trust in their data systems.
The rate adoption of automation and autonomous systems in non-manufacturing segments is growing faster. AMR’s (Automated Mobile Robots) are working alongside people in warehouses and helping in improving productivity. But is this enough?
They are already physically loading our online shopping baskets, vacuuming our homes and maintaining our lawns. But what will it take for automated and autonomous systems to proliferate across industry and society – on the roads, city streets, building sites, fields, factories and schools?
It’s a common fallacy that perfecting navigation for robots and autonomous vehicles is straightforward. Actually, it’s a tough nut to crack. But our robot navigation algorithm could unlock a range of industrial automation applications.
The extraordinary potential of what we might term empathic technology promises rich human/machine relationships that are almost unimaginable. It’s time to explore the promise of Human-Machine Understanding.